
00 938 PRTOTYPE itA-TINE UITOR USER'S INUNL(U) 1/1
CEGIE-ELLOU UNIV PITTSUROH PA SOFTIME ENI~f
INST R YIN SCOY ET it NOV 97 CN/SEI-U7-TR-3?

UCLSSSIFIE ES O-TE2 F9-9-fFC- 65--SNF/OI1 SN.I

jjm2m_!1 25 11111.

MICROCOPY RESOLUTION TEST CHART

NAIIONAL BURfAU Of STANDARDS 1963 A

* ".n . !

I %

%. J ,-

..vw.

O. • O • O .o • • qD ". o - -o -. .

.G . ,l- .?' ._-,K,,'w ',r <,:r.. , S, ,. ?(.(, - _ :,,-,-.P,.: ,-..,.,:,-.j .c..--- .-. -.-. ,..-'A-.-'-

Technical Report(iY
CMU/SEI-87-TR-37
ESD-TR-87-200

_L:Z:":L'':. Ca3regf,-e !. wcr , %.

Software Engineering Institute

Prototype Real-Time Monitor:
User's Manual

Roger Van Scoy
Charles PlInta

Timothy Coddington -.

Q Richard D'lppolito
Kenneth Lee

(.) Michael Rissman

November 1987
00
00

DTlC
fiELECTEK

*~~JAN 2 7 e

i,,i

Apptov public telowel

(a -Uni

4 - :4, ,

Technical Report
CMU/SEI-87-TR-37

ESD-TR-87-200
November 1987

Prototype Real-Time Monitor:
User's Manual

Roger Van Scoy
Charles Plinta

Timothy Coddington

Richard D'Ippolito
Kenneth Lee

Michael Rissman
Dissemination of Ada Software Engineering Technology

Accesio i tor
NTIS C R&I

I DH"L' 7T,1

jlj ,nt St , f ". .
- c \ /

By , . ,%

" Approved for public release.

is .. t
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University ,

Pittsburgh, Pennsylvania 15213

S..

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information

exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
SEI Joint Program Office

.4

This work was sponsored by the U.S. Department of Defense.

Thi document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and tchnical information for DoD personnel. DoD contractors and potential contractors, and other U.S
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical N"
Information Center. Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce.
Springfield, VA 22161.
UNIX is a registered trademark of Bell Laboratories. VMS is a trademark of Digital Equipment Corporation.

i'S

9 R~i ;W . : ;: ¢; ;¢ % 4

Table of Contents
1. Basic Concepts 3

1.1. Definitions 3
1.2. Command Summary 3
1.3. Prototype Restrictions 4

2. Selecting Ada Variables 5

3. Variable Manipulation 7

4. Page Definition 9

5. Page Management 13

6. Page Control 15
Appendix A. Command Language Summary 17

Appendix B. Generating an RTM System 27
B.1. Create the Variable Database 27
B.2. Create the Type Database 30
B.3. Create the Compute-Address Procedure 32
B.4. Customize the System Dependencies 35
B.5. Customize the Processor Configuration 37
B.6. Tune the System Generation Parameters 38
B.7. Connect the RTM and Application Together 39

References 41

Index 43

CMU/SEI-87-TR-37

P

J

d

II CMU/SEI.87-TR.37

................
~~%4~* v ~ ~ ~ ~ ~ -. * .~/ /*~~ ~*. - a

i'l.

List of Figures
Figure 4-1: Edit Menu 9
Figure 4-2: Form Attributes Menu 10
Figure 4-3: VT100 Keypad Definition 10
Figure 4-4: Field Definition Menu 10
Figure 4-5: Field Definition Conventions 11
Figure B-1: InitializeDatabase Procedure 28
Figure B-2: Example of Generating Variable Information 31
Figure B-3: Code Fragment That Defines a Type Database Entry 33
Figure B-4: Generic Conversion Package for Integers 34
Figure B-5: Code Fragment That Instantiates Integer Conversions 35
Figure B-6: Code Fragment That Performs Integer Conversions 36

Figure B-7: Simple ComputeAddress Procedure 37
Figure B-8: ProcessBuffer Procedure for Two CPUs 38
Figure B-9: Application to RTM Connection 39

CMU/SEI-87-TR-37il

a-.
• " o " " " " -w- -.- o ° - ° .-. = - o. -,-. . • - • • .- - ,- •-,- -. . ,* . .- -. -,• -. •- .,.

; ' ., % - . ' , . , . . .", . o . . . , - . • . . . - . , . . , -' . . "

Prototype Real-Time Monitor: User's Manual
Abstract. This report defines the user interface to the prototype real-time monitor
(RTM). It defines the concepts and commands needed by a software engineer to use
the RTM. In addition to defining the user interface, the report explains the steps
needed to tailor the RTM to work with the user's application..

Intended Audience
The manual is intended for software engineers familiar with the Ada8 1 language and the con-
cepts involved with software integration and testing.

Associated Documents

* Reference Manual for the Ada Programming Language [Ada 83]
e Prototype Real-Time Monitor: Requirements [D'Ippolito 87]

e Prototype Real- Time Monitor: Design [Van Scoy 87a]

* Prototype Real-Time Monitor: Ada Code [Van Scoy 87b]

* User's Manual for a Form Generator System in Ada [Texas Instruments 85a]

W User's Manual for an ANSI X3.64 Compatible Virtual Terminal in Ada [Texas Instru-
ments 85b]

Context of Report
The prototype RTM described in this report was built to address two specific technical questions
raised by the Ada Simulator Validation Program (ASVP) contractors:

1. How can user tools find, access, and display data hidden in the bodies of Ada
applications?

2. How can user tools be layered on top of Ada applications?

The prototype is documented by this report because the ASVP contractors had a need for a
monitor tool, but did not have the contract resources to develop one. The prototype RTM is
intended to be a simple tool that is easily rehosted and extended. It is not intended to be an
example of what a well-documented system should include. Since it was a prototyping effort, no
standard documentation or development methods were applied. Also, we did not attempt to solve
all the traditional "monitor" problems.

'Ada is a registered trademark of te U.S. Government (Ada Joint Program Office)

CMU/SEI-87-TR-37

-b

4.

-a.

S

IS

V

5-'

--. 4-

4'
4'

-5

.5-

.5' 5-

'N
-'
* S

.1)'

2 CMU/SEI-87-TR-37

, J,,

1. Basic Concepts
The real-time monitor, in its simplest form, is a tool which a software engineer can use to read F,
and write data memory in an executing application. The tool allows the engineer to do this
without requiring any prior knowledge about which memory locations (i.e., variables) need to be
operated on. The RTM has no explicit control over the application. This particular monitor is
called real-time because it is intended to be used in conjunction with real-time applications and -. ,
run in whatever spare time is available to the processor. In this way, it will not adversely perturb
the essential timing of the application. Some of the operations required to set up a monitoring
session may require a considerable amount of CPU time and user thought and can be done
without the active participation of the application; these can legitimately be considered off-line
functions.

1.1. Definitions

The following definitions describe the basic concepts which are elaborated in the remainder of "4
this document. -:

Variable A legal Ada variable that exists in the application and can be monitored.

Variable DatabaseThe collection of all variables in the application that are accessible to the user
through the RTM.

Page A collection of variables that are read and displayed to the user as a unit.

1.2. Command Summary

The commands used by the user to control RTM operations can be summarized as follows:

CHECK Checks all the variables on a page for existence and accessibility.

EDIT Creates or modifies a page.

READ Accesses a single variable in the application.

SET Assigns a new value to a single variable in the application.
START Begins reading a page of variables from the application and periodically dis-

plays the page to the user.

STOP Terminates the reading of a page begun by a START command.

QUIT Terminates the RTM. II
The full description of the commands, including examples, can be found in Appendix A, starting
on page 17.

CMU/SEI-87-TR-37 3

.. . -,.-wwu www q ~ , ; IE \ '' , V: N ' V, Vf ' .(W' w' w . , * .. V , ' -.' V • U . . - , . , . ;

1.3. Prototype Restrictions
One important point to keep in mind is that this manual describes a prototype RTM, not a
production-quality RTM. As such, a number of simplifications and restrictions to the RTM have
been made. These restrictions are:

p.4

"Single display device

* VTPo 00 type terminal77
* 80 columns by 24 lines

* lines 1 - 19 for use by user
* lines 20 - 24 for use by RTM

* keyboard input only

* No simultaneous input and output to the display device (i.e., screen updating halts
during user command entry).

" Only integer, real, and enumeration types can be displayed (more complex types can '

be displayed by breaking them down into these components, or the user can imple-
ment display routines for more complex structures).

" Ada task type variables are not accessible for display or modification.

a ... ,

* Ada access type variables are not accessible for display or modification, but the
underlying objects are accessible (i.e., the RTM does not display the address that is
the value of an access type).

" Ada constants are not accessible for modification.

Generation of the variable database and associated conversion routines are the re-
sponsibility of the user.

* Only one page of variables can be displayed (i.e., be active) at a time.

V

4 CMU/SE-87-TR-37

• Aa aces tpe arabls re ot ccssilefordisla ormoifiatinbutth

2. Selecting Ada Variables
Selection of Ada variables (objects) for page definition or variable manipulation purposes is ac-
complished by specifying the full Ada variable name 2 using dot notation, which represents the
object of interest. For example, an Ada variable process controlling-parameter in a package
ControllerA which is "withed" by the main procedure RealTime Application would be speci-
fied as follows:

RealTime Application. Controller_A. process_controllingparameter

All Ada variables referenced by the user are checked for existence in the variable database
when:

* a START command is issued

" a CHECK command is issued

" a READ command is issued

" a SET command is issued

This checking is ne by attempting to locate the variable in the variable database. If a variable
cannot be found in the database, an error message is issued in all cases. If this happens when
processing a READ or SET command, the command is ignored. If this happens in a START
command, the variable is deleted from the display page, but any legal variables on the page will
be processed normally.

2No shorthand notation is available in the prototype RTM

CMU/SEI-87-TR-37 5

c or

-S

4.

4.

1

.1*

-4 N.

*~. .

t

a, %

'U

gt*

I
6 CMU/SEI-87-TR-37 2

a
~cu9I~& Z 2~ Z~5.&&Q%2Y ~

Ar~~~~~~° "UE M..-W--iWW"~7

3. Variable Manipulation
The user can interactively view and modify data on an individual variable basis. This is done ...,

using the following commands:

READ Reads the current value of the specified Ada variable and displays it on the ,/,
user's terminal.

SET Replaces the current value of the user-specified Ada variable with the user-
specified value.

The values displayed will reflect the type of Ada variable, and similarly, the value expected for
input must reflect the type of Ada variable. Both of these commands perform one-time-only
operations (which is different from the START command that initiates a continuing operation).

'.%.

%

''

'°-

CMU/SEI-87-TR-37 7

ro . .. =¢ L~ .,.-.-¢ . .%€ .-.'%- - € N'=% .,.. %' -% '. ",..,€ 2.'
, .

; .. ' ' ':"" .,-,"°

~---------- -. s- ~ W W~ if ~ if ~W .N ~X ~Z \N '.~ FX~N P~F ~ '~P ~ DY'. ~J V~ W. r. ~ ~ 47 ~ W~5~ . .~ .q ~

-d

A-

-9

V

'V.

-d

'.5

-II

-V

'S
'p

.5
'.5 J.

Vs

.5,.

5%"

55~5~
.S.

55~

7!
S'S. %1

8 CMU/SEI-87TR-37
* 4

.s W W V

PS

4. Page Definition
The RTM provides basic page definition facilities that allow the user to define pages for data
collection purposes (i.e., a page to be monitored).

The user creates and modifies pages by using the EDIT command. All page editing is done via a
forms management system that allows the user to move around the screen using cursor keys and
to define the variables on the page using the keypad. Additional detailed infomlation on how
editing a page/form is accomplished can be found in the User's Manual for a Form Generator
System in Ada [Texas Instruments 85a]. What follows is a brief overview of the process and a
detailing of the conventions expected by the RTM.

A page, as discussed earlier, is a collection of variables that are read and displayed as a group.
The creation of this group is done by the forms management system. This system views each
page as a form, and on that form are fields (which the RTM treats as variable names). Thus, the
creation of a page consists of creating a new form (page) and defining the fields (variables) that
will reside on that form (page).

The first step in defining a new page is to issue the EDITO; command. The RTM will then
respond with the menu shown in Figure 4-1.

The Interactive Form Generator
Choose "one" of the following:

C - create a new form
L - load an external form
E - edit the current form
M - modify the form's attributes
S - save the current form
Q - quit

Selection:

Figure 4-1: Edit Menu

These options are rather self explanatory:

C Creates a new form and puts the user into edit mode.

L Recalls a previously saved form for editing.

E Edits the form currently in memory (useful for making incremental changes to a form and
available only after a C or L command).

M Edits the characteristics of the form, such as row/column dimensions and screen position.

,;. S Stores a form on disk.

0 Exits the editing session (not the RTM).

When a new page is created, the user is asked to determine the form's attributes using the menu
shown in Figure 4-2.

Here is where the prototype restrictions on screen size have an impact. The user should not (the

CMU/SEI-87-TR-37 9

=q l b at • p% p % % " • ... r % % .- . ., .% %" . .e, e ./=.. % ," '.%%,e ,P '%%.",. 4''''.'% ',1-. 4"'',% %.% % .. '''.'."". '-'.. ". -'-..' " ' " ' % . '4"''" -5
-

Form Size Rows: Columns:
Form Position Row: Column: "_ _

Clear Screen Option: (Yes, No)

Figure 4-2: Form Attributes Menu

RTM cannot enforce this, that is why it is a convention) define a form that overlaps lines 20
through 24, which are reserved by the RTM.

Once the form/page attributes are set (which can be changed later using the M option above), a
completely blank page is presented to the user. The user is now free to move about the screen
using the cursor keys. Text can now be typed anywhere on the screen. This text will form the
trim for the page, but does not constitute a variable. To place a variable on the screen, the user
must position the cursor where the variable is to be placed and using the keypad shown in Figure
4-3, enter a 7. (There is a complete discussion of all the keypad commands in the Forms Gener-
ator User's Manual [Texas Instruments 85a].) The RTM responds with the menu in Figure 4-4.

----------------------- +---------
I PFI I PF2 I PF3 I PF4 I
I I I Exit I Deletel
ICommandl Help I Form I Line I
--------------------- +----------+
I 7 I 8 I 9 I -

Createl ModifyJ Deletel Deletel
I Field I Field I Field I Eoln I
------------------------- +--------
I 4 I 5 I 6 I , I
I Copy I Move I I Deletel
I Field I Field I I Char I
------------------------- +--------
I 1 I 2 I 3 I
ICopy I Move I IEnterl
ILine I Line I I
------------------------+ Accept-
I 0 I IForm I
I Insert I Insert I I
I Line I Char I
---------------+-------+---------

Figure 4-3: VT100 Keypad Definition

Field name: _._
Field length:
Character: (1 - alphabetic, 2 - numeric
limits 3 - alphanumeric, 4 - not limited)

Display: (1 - normal 2 - secondary
rendition 3 - reverse 4 - underline)

Field mode: (1 - input/output 2 - output only)
Initial value:

Figure4-4: Field Definition Menu

10 CMU/SEI-87-TR-37

sWhat the RTM expects the user to enter in these fields is Shown in Figure 4-5.
"..

Field name: full Ada path name of variable
Field length: display size, in characters, of object-
Character "
limits : 4

I Display
rendition: User' s choice

Field mode: 2,='
Initial value: not used

Figure 4-5: Field Definition Conventions -

The user can create as many or as few fields as will fit into the 19 lines available. When all the QA

variables are entered as fields, the field definition mode is terminated by entering a PF3 from the ,
keypad, at which point the main editing menu is presented again. At this point, the user must.,",,
explicitly save the page by issuing the S command shown in Figure 4-1 and supply a name for
the page. Once saved, the page is available for later use by the RTM for display purposes or

subsequent modification by editing.

V.J

A command closely related to EDIT is CHECK. Since the forms management system has no

direct knowledge of the l theield deintinmd is te RTM, the CHECK command Should
be used after editing a page to insure that all prese in. A p the page are accessible to

the RTM.

These two commands also allow pages to be created and checked off line, i.e., without an ex-
ecuting application. This allows the time-consuming page editing operation to take place prior to
using the RTM to debug or tune an application. It can also save CPU time in those cases where
the RTM and the application are required to share a CPU, or where the RTM is rapidly updating

the display.

V',

',p

N %.

ei'f-
CMU/SEI-87-TR-37 I1 ,

-.

~ ~ EJ ~ ~ r 4 r:~<-C.r.r - r~ .~ s-~ r*1~

-b

it-

-b

S.

7,

~.1*

.2

1~

* .2-S.

S.
V
U

I-,

4.

2t

4..

.A *
*") *q~

N

.t 14s

'P

it: t
tie ,

"/

'I

'-U ~U

'S

7'
12 CMU/SEI-87-TR-37

V ~

~ ~ V 9 . ~ *~J ~S~f%''' yr %4%'%4.W.~* g., ~ %* % 4, 1

5. Page Management

The capabilities for managing all the pages defined by the user are split between the forms
management system discussed previously and the host computer operating system. The basic
capabilities of page management are:

Page Operation Method

Copy This can be done two ways:

e via the forms management system by loading using the L option,
editing the form, and then storing the form (using the S option)
under a new name

a via the operating system by using the a copy command (like copy
on VMS systems or cp on UNIX systems)

Delete This is done by simply deleting the appropriate page at the operating system
level. Neither the RTM nor the forms management system imposes any
form/page naming conventions on the user, so it is incumbent upon the user to
keep track of page names. Perhaps the easiest solution to organizing pages
is to create a page directory, and always execute the RTM from that directory.

Directory Again, this is handled at the operation system level and it is the user's respon-
sibility to know the difference between page file names and any other file
names in the directory.

CMU/SEI-87-TR-37 13

- - a . - - .. , .- , , .- . . . o, .- - - - . ,. " . , . , - . , .-. ,. , .- -

Lip

IL.

fig.

14 CMUSEI-8-TR-3

P~TWT~~7WT~WV W 'i r ~VVV M~P.W ' .N' ,NI 7(T-l FL- A W I LM. '.J-r.~~'' "~ ~ '~~V-VVV- . Z ~~ 7V

I%

6. Page Control
Once the user has created a page that specifies Ada variables for data collection purposes, the ,,.

page can be activated for display purposes using the START command. The data collection and
screen refresh both take place at the update rate specified in the command. Once the START

command is issued, data collection and displaying take place automatically, without user inter-

vention. The START also places the terminal into an asynchronous input mode. The normal
mode of input is for the RTM> prompt to be available to the user all times, but when a page is
actively being displayed, this interferes with output of data. To alleviate this problem, no prompt " "

is presented to the user. This does not mean that the user has lost control of the RTM; the user
simply has to hit any key and the RTM> prompt will appear and a command can be entered. ..

This also accomplishes a hold/resume option for page updating. While the RTM is waiting for the
user to enter a command, no updates are being done to the screen. Once a command is entered

and processed, updating of the screen resumes (assuming the page was not terminated, which
we discuss below). Thus, a hold (cease updating) is a return, and a resume (restart updating) is

a second return.

Once a page is no longer needed on the display, it can be terminated using a STOP command.
This removes the page from the display, terminates collection of the data from the variables
specified on the page, and returns the RTM to normal input mode (since only one page can be

active in the prototype).

CI

CMUSE-8-T-3 1

--. : ..-'

'V. V - '- V .. . J. P - .A P ~ .A..A & J ~ .~..A.~ .. .&&~ >

'p

'a

.ft*

.ft

~ft

*6

'I

ft~
.i ,,

-ft

ft%

r
ft~

5-

-. 5.

.*5 -ft

'pp

'ft

p

* -ft

ft 'ft

/

ft -ft

S.--)'.

N
N.

.. ft~

*~5~4
ft. ft

*S

C-

5-

~'ft, '~
A

4
1 %

-~ .45-

16 CMU/SEI-87-TR-37

ft/ *.*4 4,v.('/ ~ 5- * *.......

=".1

Appendix A: Command Language Summary

Conventions Used in this Appendix
The command syntax shown in this appendix is that of an Ada procedure call (see Section 6.4 in
[Ada 831); that is, all RTM commands are invoked by an Ada procedure call, which implies that

case and spacing are not significant. Several additional conventions in defining the command
syntax:

Convention Meaning

any legal Ada variable name

any legal page name

nnnn any Ada value (integer, real, enumeration, etc.)

x.xx any legal real number

myyariable any Ada code

x.y.foo any user-entered text

Enter Data> any RTM generated output

In this appendix, the basic format for each command is:

" synopsis

" syntax

" parameters, it needed

* description -,

" examples

" exceptions, if needed

CMU/SEI-87-TR-37 1

CHECK

CHECK
Checks the Ada variables on the specified page for availability in the variable
database.

SYNTAX
CHECK (Page => page_spec);

,.P

PARAMETERS
pagespec

- Specifies the page on which checking is to take place. This pagespec may . ,
include a path name for the page file (as shown below).

DESCRIPTION

The CHECK command retrieves the specified page for analysis. This analysis
consists of checking the Ada variables defined on the page for existence in the
variable database.

This command can be used in conjunction with the EDIT command to develop
the pages of Ada variables off line. These pages can be created using the page
editor, and then checked against the variables available in the variable database,
with appropriate changes made using the page editor. This off-line activity will
allow the user to prepare for the monitoring process ahead of time.

EXAMPLES

0 Check(Page => [rtm.page_definitiontestpage);
Checks the Ada variables specified on the page, test_page, for existence in the
variable database.

EXCEPTIONS

Variable not found: ####

Illegal mode for variable: ####

Error in accessing page:

."

18 CMU/SEI-87-TR-37

% W

EDIT

EDIT i~
Places the user in the page editor.

SYNTAX
EDIT

DESCRIPTION

The EDIT command places the user into the page editor. This allows the user to
create new pages, load existing pages, edit pages, and save the edits. It also
allows the user to modify attributes of the page. See Chapter 4, Page Definition,
for more details.

Once a page is created by the user, it can then be used for monitoring purposes
See Chapter 6, Page Control, for more details.

EXAMPLES
0 Edit) ;

Places the forms management system menu on the display (shown in Figure
4-1.)

EXCEPTIONS

None.

CMUISEI-87-TR-37 19

-ft. ..

%2:.

W°•",

-"2"Y3w777-77w, -7

QUIT

QUIT
Exits the current RTMV session.

SYNTAX
QUIT

DESCRIPTION

The QUIT command exits the current monitoring session and returns the user to ~
operating system or application control.

EXAMPLES
0 Quitt')

Terminates the current RTM session.

EXCEPTIONS --

None.

A. .

20~~ ~ ~ CM/Eb8-R3

READ

=,.%

READ
Reads the current value of the specified Ada variable and displays it on the
user's terminal.

SYNTAX
READ (Name => adavariable);

PARAMETERS
ada variable
The name of the Ada variable that the user wants read.

DESCRIPTION

The READ command reads the current state of the Ada variable specified by the .
user and displays it on the user's terminal. This command is used to examine
the values of individual Ada variables in the application being monitored on a
one-time basis. This command can be issued before and/or after setting an Ada
variable (see the SET command) to check the value of the Ada variable.

EXAMPLES
0 Read (Name => engine.rpm); e

The Variable: engine.rpm
has the value: 6032.24

Reads the current value of the Ada variable engine.rpm and displays it on the
user's terminal.

@ Read(Name => test stub.my record.integer part);
The Variable: test stub.my record.integer_part
has the value: 194,

Reads the current value of the Integer part component of the record myjrecord
and displays it on the user's terminal.

* Read(Name -> fuel system.status(tank_1)); "
The Variable: fuelsystem.status (tank 1)
has the value: full

Reads the current value of the tank_1 component of the array status and dis-
plays it on the user's terminal.

o Read(Name -> my pointer);
The Variable: mypointer
has the value: 1657

Reads the current value of the object pointed at by mypointer and displays it
on the user's terminal.

CMU/SEI-87-TR-37 21

-. ," %.°]

- -~~v VW W VW VW VflV W)WM W - - - - - - - - - - - - - - - - - -r A .? A . S .

READ

EXCEPTIONS
..

Variable not found: ####

4

22 CMUSEI-8-TR-3

SET

SET
Sets the Ada variable to the specified value.

SYNTAX

SET (Name => ada_variable,
Value => value);

PARAMETERS
ada variable
The name of the Ada variable whose value the user wants modified.

value
The new value which the user wishes the Ada variable to have.

DESCRIPTION

The SET command overwrites the current value of the Ada variable with the
value specified by the user. The value specified by the user must be compatible
with the type of the Ada variable.

This command can be issued to set up process-controlling parameters before the
application begins, or it can be used in conjunction with the READ command to h "
fine-tune the system as it is running.

Note: Since the state of the application cannot be determined when the operation
is performed, this command should be used cautiously.

,- 1 ,

EXAMPLES
o Set(Name=>engine.rpm<, Value=>4000. 00);

Sets the value of engine.rpm to 4000.00.

* Set(engine.rpm, 4000.00);
Same as the above example without named association.

EXCEPTIONS ""

Variable not found: ####

Illegal value: nnnn

CMU/SEI-87-TR-37 23

START

, % "

START
Starts collection of data based on the specified page of Ada variables for display.

SYNTAX
START (Page => pagespec,

Update Rate => value);

PARAMETERS
page spec
Specifies the page which identifies the Ada variables to be collected and dis-
played. The page spec may contain a path name to the page.

value
Optional parameter which specifies, as a real number, the rate at which the data
are collected and written to the display device. The default value is 2.0 seconds.
The usable range is from 0.01 (once every hundredth of a second) to 60.0 (once
every minute).

DESCRIPTION

The START command begins collecting the values of the Ada variables defined
on the user-specified page and displays them on the user's terminal. The rate at ,
which the data are displayed is user controllable by specifying the UpdateRate
parameter (in the prototype, the display updaterate is also the data sampling
rate). If this optional parameter is not specified, then a default update rate of two
seconds is assumed.

Prior to data collection each variable on the page is located in the variable data-
base. If an Ada variable is not available for examination (i.e., it is not in the
variable database), then:

1. The value is not accessible

2. It will be dropped from the collection list

3. An error message will appear on the page (i.e., the user's terminal)
where the data was to be placed.

"-

EXAMPLES
0 Start (Page -) EngineVariables, Update Rate - 0.2);

Starts data collection of the Ada variables on page EngineVariables and displays
them on the default display device with the data being updated every 0 2
seconds.

24 CMU!SEI-87-TR-37

% %~

START

EXCEPTIONS

Variable not found: ####

Error in accessing page:

Maximum number of active pages in use.
STOP command must be issued first.

Bad updaterate, reenter in x.xx format

-

CMU/SEI-87-TR-37 25

.

.~ .- ~\..- 4~-4.,%.- .-4 V %.% V %~ w \.~~ Vo '°'*''

'k;',":..

STOP

STOP
Stop data collection and display of the named page.

SYNTAX

STOP (Page => pagespec); V -

PARAMETERS --

pagespec
Specifies the page on which data collection is currently taking place.

DESCRIPTION

The STOP command terminates the collection of data based on a page which is
actively collecting data for display and removes the page from the screen. -'

EXAMPLES
0 Stop (control_parameters);

Stops data collection of the Ada variables on the page controLparameters -

(assuming a START command for the page has been previously issued).

EXCEPTIONS

Page not currently active:

No active pages

2. .s"m'.-

.

26 CMU/SEI-87-TR-37

%,

Appendix B: Generating an RTM System
This appendix outlines the basic steps that are needed to build a monitor for an application.
Since each application is unique, these steps must be repeated for every application because it is
easier to customize the RTM to meet the needs of each application than to force the application
into a set mold dictated by the RTM.

The basic steps for generating the RTM system are:
* Create the variable database.

* Create the type database.

* Create the computeaddress procedure.

* Customize the system dependencies.

* Customize the processor configuration.

* Tune the system generation parameters.

* Connect the RTM and application together.

Each of these steps is discussed in detail in its own section later. All of these steps, with the
exception of the tuning step, involve changing the bodies of the various packages.

Conventions Used in This Document
The conventions used in this document are listed in the left-hand column below their associated
meanings are listed in the right-hand column.

code Ada language construct
package Ada package name
subsystem Ada subsystem
COMMAND RTM command

B.1. Create the Variable Database

The creation of the variable database involves two packages: the variabledatabase package,
which is responsible for creating and managing the variable database as a structure, and the
library interface package, which is responsible for generating the variable information stored in
the database.

Two procedures comprise the variable database:

Initializedatabase: Creates and populates the database (see Figure B-1).

find: Traverses the database.

The variable database is built automatically by Initialize Database during elaboration of the
RTM. These routines depend on the interface provided by the hbrary interface package and do
not change as part of the customization of the RTM.

CMU/SEI-87-TR-37 27

'-' .

with UncheckedDeallocation,
- Use the service "uncheckeddallocation."

with Types_Manager;
- Use the service find.'

separate (VariableDatabase)
procedure InitializqDatabase Is

..
-I Decripton:
-j This module is responsible for building the variable database
-j by whatever means are available.

-/Parameter Description:-I none ,

-I Notes:
-, A# of the system dependent issues related to obtaining
-I data object addresses have be isolated in these packages
-, Library interface: for static data information.
-j Addressjgenerator: for dynamic data information.
-, These are the packages that must be changed to reflect the
-I system configuration and environment %

..
- procedure Free Is new UncheckedDeallocation

(LibraryInterface. VariableRepresentabonThe_Variable).

VariablePosition: Library Interface VariableIterator"
Node Root. Db.Tree;
Found._Variable: Boolean;
TheNextVanable: TheVariable;

begin

- The basic operation is the same for all the variables:
- Build a vanable representation record.
- Insert the record into the tree.
- Repeat for all variables.

LibraryInterface Makelterator(VanablePosition);
while Librarylnterface.More(Variable Position) loop
begin

TheNextVariable = new LibraryInterface.VariableRepresentation,
LibraryInterace.GetNext

(The Iterator .> Variable Position,
Variable Information => The NextVariable all),

TheNextVanable.Data.Type :- TypesManager Find
(Name => TheNextVariable.VariableType).

Db Insertnode(N => TheNextVariable,
T -> VariableDatabase.
Root =.> Node Root,
Exists -> Found_Vanable);

exception
when TypesManagerType Not Found .>

Free (TheNextVariable).
end;
end loop;

end Initialize-Database,

Figure B-1: InitializeDatabase Procedure .

~1

28 CMU/SEI-87-TR-37

%ry 1 ~ TV V_ V Y 7CIR -_ -'L WX V- OR. ~.

The library interface is responsible for supplying the information needed by the RTM. This infor-
mation, as a minimum, consists of:

varlablename: The full Ada path name of the variable. This path name must go to the *1

record component level if such a variable is to be available for monitoring.

baseaddress: The static address of the variable in application memory.

typename: The name of the data type used in the variable declaration. This name must
match the character string used to identify the type in the types manager package (see

Section B.2).

The manner in which this information is generated is irrelevant to the RTM. To illustrate how the
library interface package is used, the code for Initializedatabase is shown in Figure B-1. In .

words, Figure B-1 embodies using the library interface to build the database; these steps are:

1. Make an iterator (using makejIterator).

2. While there are more variables to process (indicated by a true value for more loop):

a. get the next variable information (variable.representation of the next vari-
able, using get_next)

b. get the type of the variable (using find)

c. insert the variable into the variable database

This simple algorithm describes the entire process of building the variable database and il-
lustrates that the variabledatabase knows nothing about the data in the structure or about how
the data are generated. Its only concern is that the information is supplied using the interface.

variable representation: Type that supplies the variable information (outlined above)
plus any miscellaneous information needed (or available).

makeIterator: Responsible for doing all the preparation necessary to generate variable

information. It then returns an iteration control variable which is used by getnext to select
the next variable to generate information on and by more to determine if all of the available
variable information has been retrieved. This variable is private to the library interface

package and has no significance outside the body of the package; therefore it can be used
to represent anything the library interface needs internally to collect the variable informa-

tion.

get next: Takes the iteration variable and generates a variable-representation record.
The manner in which this is accomplished Is irrelevant to the RTM. The existing version

uses standard Ada facilities and is based on the assumption that the system is executing
on one processor. For a two-CPU configuration, some kind of parsing of an address map
would have to be substituted for this body. There Is no order implied by the manner in
which variables are returned; the variabledatabase package simply builds the structure to

tie all the data together.

%

.0%

CMU/SEI-87-TR-37

29
,-"

S . .. -

.-

More: takes the iteration variable and returns a true value when more variables are avail-
able and a false value when all the variables have been processed. Again, the exact
nature of how this is determined is dependent on how the variable information is generated.

The approach used in the prototype is applicable only to a single processor configuration. In this
approach, the library interface "withs" in all the packages of interest to the user. The package
then lists all the variables visible along with their Ada data types; the 'address 3 attribute is then --

used to return the address of the variable (as an integer). The code that implements the
library interface package for this case is shown in Figure B-2.4 Clearly, this approach has some
severe restrictions:

" Only package-level objects can be monitored (no local or package-body data are
visible).

" It does not work in a multiple processor system.

" Every item to monitor must be placed in the database by hand; this implies that all
record components and array references must be expanded (which creates an un-
necessarily large database).

A number of other solutions to the database problem are possible, and in fact must be actively
pursued for multiple CPU systems. Something as simple as a linker load map showing where all
the static variables are allocated can be parsed and used to populate the variable database.
Clearly, a better solution (possibly the best solution) is access to the compiler and linker output
used by a symbolic debugger. The availability of this level of detailed information vastly in-
creases the number of items that can be monitored and reduces the tedium that the prototype
approach implies. %

B.2. Create the Type Database

The typesmanager package contains all the type information that the RTM needs to know.
When we discuss types, we are referring to the Ada data types associated with the variables in .-

the variable database. To be in the variable database, a variable's declared data type must be in . -

the type database; without this correspondence, the RTM does not know enough about the vari-
able to extract it from the application or display it to the user.

The type database is entirely constructed by hand (again, access to compiler-generated infor-
mation would alleviate this problem) primarily because informing the RTM about a new type
requires program changes to the body of typesmanager. The best way to illustrate the infor-
mation needed by the types-manager is to examine the code fragment shown in Figure B-3.

The type information is held in two structures: valid lypename and type representation. The

explanation and examples shown in Figure B-3 illustrate how a type is entered into the database:

3Care must be taken in te use of 'address attribute since it may need to be adjusted to obtain the true address of the
data,

4This approach has to be entirely crafted by hand and is not the recommended approach

30 CMU/SEI-87-TR-37

with System;
-Use type *address.'-

with Unchecked-Conversion;
-Use service 'Unchecked conversion.*

with Test Stub; 4
-Use data objects defined here for testing the monitor.

package body Library Interface is

- Used to convert all the system addresses into integers so that
- they can be stored in the variable database. In a system where
- an address map is used, this routine will need to be reimplemented.

function GetAddress Is new Unchecked-Conversion
(Source -> System.Address,
Target => Integer);

procedure Make Iterator (The Iterator: In out Variable-Iterator) Is
begin

The Iterator :- 0;
end Makejterator;

-procedure i etTe trtrn out VariablelIterator;
out ariale Rpresentation) Is

begin
case TheIterator Is
when 0 ->

VariableIntormationVariable Name(1..20) :. 'test-stub.myjinteger;:
Variable-information .Base-Address :- GetAddress(Test Stu b.Myjlnteger'Address);
Variable jnformation.Variable Type(l..7) := "integer;

when I=
Variabie..Inlormation.Variable-Name(1..17) := test-stub. my-real";
Variable_-Information. Base Address := Get Address(Test..Stub. My_RealAddress),
Variablo _lnlormation.Varia-bleType(I .5):= "float*;

when others =

null;
end case;
The tterator:- The-lterator *1;

end GeL Next; -ft

* function More (The iterator: n VaniablejIterator) return Boolean is
* begin

If The Iterator <- I then
RETURN True;,

* else
RETURN False;

end If;
end More;

end Library Interface;

Figure B-2: Example of Generating Variable InformationI

CMU/SE1487-TR-37 31]

~ ~ '~"-~~* ~' t.. ma V.

" An enumeration name for the type is created (in validtypename).

" A representation record for the type is created (in typerepresentation).

" A string name is defined for the type in the package body (this is the name returned
by library interface).

The only restriction on types is that enumeration types (from the application being monitored)
must be declared in the body of package types manager, this can be done by "withing" in the
package that declares the type or by manually redefining the type. This restriction does not apply
to Integers and floats, since they are universal base types.

Once the type is defined, the generic conversion routine for the base type must be instantiated for
the new type (the convertintegers generic is shown in Figure B-4). The generic is instantiated
with the source type (a type that the RTM understands), a default display width, and a low-level
conversion procedure (shown in Figure B-5). After instantiation, integer bit strings can be con-
verted to display strings by reference to rtm_Integers.make_string (shown in Figure B-6), or a
string can be converted to a bit string by using rtm_integers.makevalue (also shown in Figure .,

B-6). The complete version of the case statements shown in Figure B-6 contains an entry for
every type defined in validtypename and invokes the generic instantiation appropriate for
each type.

Finally, the default Integerconversion procedure shown in Figure B-5 is critical for proper
muflti-CPU processing. In a single CPU system, the approach shown in Figure B-5 is correct -
that is, take an address and return the integer at that address. In a multi-CPU system, this may
not be correct, especially when the underlying type representation is different between the RTM
processor and the application processor(s). This situation requires the conversion routine to map
the target (application processor) bit representation into the host (RTM processor) bit represen-
tation. It is the responsibility of this low-level function to supply the generic conversion package
with a bit representation it understands.

B.3. Create the Compute-Address Procedure
The compute address procedure is an important abstraction for the system since it combines .•

the information from the variabledatabase and the types manager to generate effective ad- 0
dresses for variables. In the simple case used by the prototype (shown in Figure B-7), address
computation simply requires that the variable be located in the variable database and its base
address returned (since every available variable and its base address are in the database). In a
more sophisticated case, where a debugger interface is available or a more powerful parser is
used (implying that address offsets are computed), the compute address procedure can be
modified to accommodate this without impacting the RTM code. This isolation of address compu-
tation allows for more powerful methods to be incorporated as they become available.

_.1

32 CMU/SEI-87-TR-37

a-

with Test Stub; __

package body TypesManager Is

-Define the names of all the legal types,

type Validjype..Name Is (integers, Floats, Rtm Enumi1. RtmRecord); ~

-Define all the data needed about each type:
- type name as -string -> A character string version of the type name.

- This must match exactly with the type as it
- exists in the application program, where the

OW nyeame is a convenient enumeration literal .
- for this typ.

- ypejname -> An enumeration literal for the type.
- type leingth ->. The size of the typ in smallest units.
-display width -> Number of characters needd to display a value

- of the type: integer.25;25.
-indirection level -> An integer that indicates how many levels ot

- indirect access the type represents.

type TypeRepresentation Is record
Type Name As String: String(.,256);
TypeName: Valid -TypeName;
TypeLength: Integer := 0;
DisplayWidth: Integer := 25:
Indirection-Level- Integer := 0;

end record;

- Define the table that holds all the type information. define

-type_name as string in body. 1
Number_-Of_-ValidTypes: ValidRtmType := 4;
Valid Rtm Types: array (I.NumberOfVaid Types) of TypeRe presentation 2'.

((Type Name As String => (others =

TypeName =~Integers, TypeLength => 1.
DisplayWidth -> 10.lndirection Level => 0).
(TypeNamne -AsString => (othersa=>)
TypeName .> Floats. TypeLength => 1,
DisplayWidth => lO.1ndirectionLevel => 0).
(TypeName -As String >~ (others =>)
TypeName .> RtmEnumi. Type Length => 1. -,
DisplayWidth -> 5,Indirection-Level .> 0), 1

(TypeName As String .> (others .>),.
TypeName >~ AlmRecord, Type Length .> 2. -
Display Width .> 20.Indirection Level .> 0));

.....................................

- Package Body

-/The body is responsible for initializing the string versions
-Iof all the type names.

..

begin
Valid .Rtmj ypes(I).Type .NameM..trg1 -.7) ** integer;
VaidRtTypes(2).Typ..Name.AsString(I..5) :-flat';

Valid Rtm Types(3).TypeName.As. String(I .9) :.- fln-enum V ;
ValidiFitm Types(4).Type Name AsString(I .10) * -rtmrecord;

eld Tipes.Mwanager;

Figure 8.3: Code Fragment That Defines a Type Database Entry

CMU/SEI-87-TR-37 33

with System;
-Need the type 'Address.'

package Conversions Is

- Signals that the value in the character string is the wrong type I

- for the variable,. %

Illegal-Value: exception:

generic

Default Width of the generated character strings.
Width: Positive :. 15;

- Integer type source, This is the host machines type.
type Source-Representation Is rang,

-Low-level conversion routine needed to convert from the target
- representation to the host representation of the source type.
- (referred to as source representation)

with function TargetConversion (Raw Value: in System.Address)
return SourceRepresentation:

package generic package Convert-ntegers Is

procedure MakeString (Raw Value: in System.Address,
Field-Size: In Integer;
Value: out String);

.............................

-lDes criptiori:
-lMake-String takes a binary bit string and converts it into

an integer character string.

p Parameter Description:
-/raw value -> The address of the binary bit string to be

converted. n
- field size -> The number of characters needed in the output

string,
value -, The Character image of the binary bit string as

ack an integer.

procedure Make-Value (Raw Value: in String
Value: In System. Address);

.............................

-I Description:
-/ Make_value takes an integer character string and converts it into a.

b' binary bit string.

-I Parameter Description:
-4raw _value -> The character string to be converted

- value -> The address where the resulting bit string is to be
-I stored.

end Convert integers;

end Conversions;

Figure B4: Generic Conversion Package for Inegers

34 CMU/SEI-87-TR-37

710

%* ",10

with Conversions;

package body Types _Manager Is

type Integer Pointer Is access Integer;
function Address To Integer Pointer is new Unchecked..Conversion%

(Source -~System.Address,

Target =~Integer-.pointer).

function Default Integer Conversion (Raw value: In System.Address)
return Integer Is

...........................
-Convert from a bit string at a system address to an integer.4
-'value. This is valid for a one-CPU configuration
-4only.

-Parameter Des cription:
ra au >The address of the bit string to convert. r

Value -Pointer: Integer-Pointer; .N
beginpqr
Value-Pointer :. AddressTo_-Integer Pointer(Raw Value);%w
RETURN ValuePointer all

end Default Integer Conversion;
pragma Inline (Default lnteger .Conversion):

-Create the package to convert from bit strings to integers.
,

package Rtmjlntegers Is new Conversions.Convert-Integers

Source-.Representation => Integer, --
Target-Conversion => Detault-integer Conversion);N

end Types.Manager;

Figure B-5: Code Fragment That Instantiates Integer Conversions

BA4 Customize the System Dependencies
One system dependency that must be addressed is the virtual terminal interface. This interface is p

based on a UNIX termcap style definition file for controlling the terminal functions. This definition
file is tcf.tcf. This file is already set up for a VT100 style terminal; thereiore, the existence of a
VT1 00 emulation mode will greatly facilitate the rehosting of this subsystem.%

Package sysdep..body is the only VAX VMS-dependent package. It is used exclusively to do
synchronous and asynchronous character I/O to the user's terminal. This package is part of the
virtual terminal interf ace, and the body will need to be reimplemented to operate in a non-VAXVMS environment.

Package sysdep .bodys is written in Ada and executes under VMS. At the lowest level of imple-
mentation. it uses the VMS system services. A system servicp call is issued to create a channel

GThis package boby is part ot the virtual terminal subsystem [Texas Instruments 85b).

CMU/SEI-87-TR-37 33

separate (Types-Manager)
procedure Convert IStringTo _alue (DataType. In Valid..RtmType; -

Raw -Data: In System.Address:
The-VYalue: In String) is

begin
case Valid -Rtmy Types(Dat_Type).Type_Namie Is
when Integers =>

Rtmn l ntegers.Make -Value (he.Value.Raw.Data).
when others .

null;
and case;

exception
when Conversionsl11legal-Value =

RAISE Illegal Value;
when ethers =

RAISE ;
end Convert StingTo Value;

separate (TypesManager)
procedure ConvertValue To String (DataType- In ValidRtm_Type;

RawD 1ata: In Systemn.Address;
Number Of Characters: In Integer;

begin ~ The-Value: out String) Is.e

The Value :. (The..Valuerange >)

case Valid Rtmn Types(Data Type).Type..Name Is
when Integers > -

Rtm Integers.Make String (Raw Value.> RawData,
Field_-Size .> Numnber-Of Characters,
Value => The-Value);,

when others .>
null;

end case;
end ConvetyalueTo-String;

Figure B-6: Code Fragment That Performs Integer Conversions -

to a device, and 010 calls are issued to perform character read and write operations on the Z.
device. Starlet and Condition Handling are VAX Ada library packages that allow easy interfacing
of the VMS system services to the RTM. I

Since the system dependencies are all tied to VAX VMS, a few words on rehosting to a UNIX
environment are in order. First, to rehost to a UNIX-based system, all the 010 system calls mutst
be replaced. UNIX-equivalent system calls will replace the VMS service calls in procedures open.,~,5
get, and put of package sysdep..body. VMSs 1/0 channels might be considered equivalent to a .A
File Descriptor in UNIX with access to the keyboard established by using the UNIX open system
call. Character level reads and writes to the terminal can be performed using textijo procedures
after setting the keyboard to "RAW" mode (via an loctl call); this will allow characters to be
obtained unedited from the keyboard driver without a terminating carrnage return (or newline); the
virtual terminal subsystem and forms management subsystem perform all character inter-
pretation.

38 CMU/SEI-87-TR-37

~Y d ~ f?> A ~ =,'.~ r %~(P ~ =I ~~4

. b

function Compute -Address (VadableName: In String)
return AddressRe presentation Is

..
-IDescription:
-j his module takes the database identifier of a variable and
-Icomputes the address of the variable.

-Parameter Description:
-jthe-variable -> Name of variable for which address is needed.
-Ireturn *~Computed address of the variable.

-/Notes:
-jNo address offset is computed since all accessible variables are
-jin the database. and the base-address already has the offset

V- taken into account.

TheVariable: Variable Database.The -Variable;
Address: AddressGenerator.Address Representation := NullAddress;
Address-Offset: constant Integer :. 0;
Data -Length: Integer;
Access-Flag: Boolean;

begin
TheVariable := Variable Database. Find(Variable Name);
TypesManager.Get Type Information (TheVaiable.Data_Type

DataLength,
Access Flag):

Address :. (The Variable. Base-Address,
4 AddressOffset.

Access-..Flag);
RETURN Address;

end Compute-Address;

Figure B-7: Simple Compute-.Address Procedure

B.5. Customize the Processor Configuration -

The RTM-to-application interface is handled by the rtm core module. On a stngle CPU. the 4.

* prototype is currently setup correctly. For a two-CPU configuration, the rim core package will
need to be duplicated. One copy will reside with the RTM on the host processor, and the second
copy will reside with the application on the target processor.

On the host processor, the processing in the process-.buffer module needs to be removed and
should look like Figure B-8. The following need to take place:

1. Transfer the command and data buff ers to the target, and 7
2. Wait for the command and data buffers to become available.

There are two stubbed modules, send buffer and get..buffer, which need to be imp~lemented to
accomplish this transfer.

U

16'

-4

iC M U / S E 1 -8 7 4 1 T .3 7

3 7

-k * 05-

-i. I

On the target processor, the process -buffer module needs to be integrated into the top-level
executive or the timing controller of the application. It is then given an execution time-slice
periodically. During this time-slice it will:

1. Look for the availability of a command buffer.

2. Process all the commands in the buffer (this is why the corebuffersize
parameter is so critical: it controls the maximum amount of time the rtimcore will
ever use to execute).

3. Mark the buffer as available and transfer it back to the host.

Again, the sendbuffer and get buffer modules must be implemented to correctly complete -r -
transferring the buffers between the processors (which is not a trivial exercise).

procedure Process Buffer Is

begin

- Send the command and data buffers to the rtm_core and wait
- for their return.

GetBuffer;
SendBuffer;

end ProcessBuffer;

Figure B-8: ProcessBuffer Procedure for Two CPUs

B.6. Tune the System Generation Parameters
The parameters available for tailoring the RTM to suit the local environment are contained in the
package sysgen. They are:

smallestunit: The type which represents the smallest addressable or most efficiently
addressable unit on the target processor. All type sizes (discussed in Section B.2) are
defined in terms of this unit. For example, on the VAX running VMS, the most efficient ,,

addressable unit is a 32-bit word or the standard integer; thus all types in the RTM type 4

database are defined as multiples of this 32-bit "smallest unit."
j-'

core buffersize: The size of the command and data buffers that communicate between
the RTM and the rtm core (which resides in the target processor along with the
application). This limits the number of deposit and extract operations that the rtim core can
process during a time-slice and should be tailored to reflect the minimum time-slice that the ..
rtm_core will have available.

processorcount: The number of processors being used in the system. It is either one or
two (a two implies that the work discussed in the Section B.5 must be implemented).

default-rtmdevice: The default disk directory where the RTM will look for page files,
unless an explicit path name is supplied.

38 CMU/SEI-87-TR-37

B.7. Connect the RTM and Application Together ,%
Once all the previously discussed customnizations are in place, the final piece of work is connect- ,._ing the RTM and application together to form a working system. The exact nature of this connec-

tion depends on the number of processors in the system. We will show an example from the - -
single processor case and discuss the extensions needed for the multiple processor case. , .

The simplest way to connect the system together is shown in Figure B-9 (this example assumes a
non-real-tirye application). This example illustrates the key steps: .,

1. real -time -monitor.setup_rtm must be invoked before invoking the RTM, since ,ithis performs all the system initializations required by the RITM. '--
2. real-time-monitor.rtm invokes the RTM for one pass of its processing loop. Two ',"points to note about this interaction are: ;

* If the user is entering a command, control will not return to the application,
program until after the command has been entered and processed. - -

* If a page is active, one page update will occur (assuming it is time to update
the page).

3. real -time -monitioterminate rtm exception signals that a QUIT command has..
been issued and indicates that a call realtime monitor.closeout rtm is required ":
(to properly exit the RTM). p i on gt

This approach to connection only works well with non-real-time applications because there is no
mechanism to control the amount of time the RTM uses. We

with Text posuse Textelo; n d t ie s e
with Test-Stub;

-
with Real-Time monitor; tekse:

procedure Appl is be vT

begin

T e st S ub .G o ;
""begin
.-.

Real Time Monitor.Rim;e dy R
exceptionwhen RealeTime Monitor.Terminate Rts f ip.ng .TPutLine('RTM terminated. application still running)
end ;

.e n d lo o p ;'
, ,end Appl;

. .

Figure B-9: Application to RTM Connection i',,
In a real-time situation on a single processor (i.e., both the iTM and to application ningonnninone CPU), the application and fRTM must be individually invoked from an operating system taskthat has the ability to time-slice the two processes. The application must be allowed to execute
as required. The nTM is executed and suspended as time permits (i.e., whenever the applicationis idle and has signaled this fact to the operating system task).

The multiple processor situation implies a critical need for real-time execution of the application. -

CMU/SEI-87-TR-37 3§ ."

mechansm o% conro the amount o time the .T u..

. .'- ', .w. .-h.Te.t. louse.Te.xt.lo-

In many respects this is the simplest case. In this situation, the RTM (modified as described in

Section B.5) can be executing on its own CPU and communicating with the application (which is
executing on one or more CPUs) over a high-speed bus. This allows everything to execute as
needed, with minimum perturbation of the application and no slow down in the RTM's user inter-
face.

4I7

IV

y%

-ii
I.
flo

CMU/SI-87TR-3

U

V ~ ~~ ~ ~~**o

,6"i

References•

[Ada 831 American National Standard Reference Manual for the Ada Programming
Language,
ANSI/MIL-STD-1815A-1983, 1983.

D'lppolito 87 D'lppolito, R., K. Lee, C. Plinta, M. Rissman, and R. Van Scoy.
Prototype Real- Time Monitor: Requirements.
Technical Report CMU/SEI-87-TR-36, Software Engineering Institute, Novem-

ber, 1987.

[Texas Instruments 85a]
User Manual for a Form Generator System in Ada.
Equipment Group - ACSL, P.O. Box 801, MS 8007, McKinney, TX 75609,

1985.

[Texas Instruments 85b]
User Manual for an ANSI X3. 64 Compatible Virtual Terminal in Ada
Equipment Group - ACSL, P.O. Box 801, MS 8007, McKinney, TX 75609,

1985.

[Van Scoy 87a] Van Scoy, R., C. Plinta, T. Coddington, R. D'Ippolito, K. Lee, and M. Rissman
Prototype Real- Time Monitor: Design.
Technical Report CMU/SEI-87-TR-38, Software Engineering Institute, Novem-

ber, 1987.

[Van Scoy 87b] Van Scoy, R.
Prototype Real- Time Monitor: Ada Code.
Technical Report CMU/SEI-87-TR-39, Software Engineering Institute, Novem-

ber, 1987.

4..

%%

9.

I,. I

CM/II-7TR374

.4.

p.
4.

S.

?4

F;
'p.

.1' -

t.

I.

'p
I,.A

I..

St
'S

S
'S

is

p

-r
V
"'p

.5"
~5.

'S

'U., U.

'p.

'p
Us

42 CMU/SEI-87-TR-37

S.

sib
*~ ~ 'is) 'is ~ ~i':'~Y' :' ' - ,cc-'r :

+ +.4

UNLIMITED.L INCI ASSITTn
SECURITY CLASSIFICATION OF THIS PAGE 1fI-l Z/V 71.A'

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2s SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b. DECLASSIF ICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A _

4 PERFORMING ORGANIZATION REPORT NUMBER(Sl 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-87-TR-37 ESD-TR-87-200

6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 78. NAME OF MONITORING ORGANIZATION
Ii appiwa bit)

P SOFTWARE ENGINEERING INSTITUTE SEI SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City. Stlate and ZIP Code) 7b. ADDRESS (City. Slate and ZIP Code)
CARNEGIE MELLON UNIVERSITY ESD/XRSI
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

04. NAME OF FUNDING/SPONSORING IS. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003
Sct. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
ELEMENT No NO. NO. NO

SOFTWARE ENGINEERING INSTITUTE JPO
PTTTSRURCH PA 15213 N/A N/A N/A

11. TITLE tinctude Security Claiftcaton,PROTOTYPE REAL-TIME MONITOR: USER'S MANUAL

12. PERSONAL AUTHOR(S)
VAN SCOY, ET AL

13. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Yr. Mo., Day) 15. PAGE COUNT

FINAL FROM TO NOVEMBER 1987 48
IS. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverie If necesary and identify by block numberp

FIELD GROUP SUB, GR ADA, REAL-TIME MONITOR, COMMAND LANGUAGE, PORTABILITY,
USER INTERFACE

19. ABSTRACT (Coninue on wvuerse If neceesary and Identify by block numberl

THIS RPEORT DEFINES THE USER INTERFACE TO THE PROTOTYPE REAL-TIME MONITOR (RTM).
IT DEFINES THE CONCEPTS AND COMMANDS NEEDED BY A SOFTWARE ENGINEER TO USE THE RTM.
IN ADDITION TO DEFINING THE USER INTERFACE, THE REPORT EXPLAINS THE STEPS NEEDED
TO TAILOR THE RTM TO WORK WITH THE USER'S APPLICATION.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEDIUNLIMITED 12 SAME AS APT. 0 OTIC USERS X UNCLASSIFIED, UNLIMITED

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22C OFFICE SYMBOL

KARL SHINGLER fInclude Ara Codei

(412) 268-7630 SEI JPO

DD FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE. UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

V N N %d>,G%, ,' .' .-- , ,I - , .. _

NINON*

Ic

'111 lic'VeME"tilli, 111 11 oil
Z 6 64

